HAP 1.3 Complex Numbers

- 1. Definitions
 - (a) Imaginary Unit
 - (b) Complex Number
- 2. Adding (3+5i) + (-2+3i)
- 3. Subtracting (6+4i) (3+6i)
- 4. Multiplying $(5+3i) \cdot (2+7i)$
 - 5. The Conjugate of z is written \overline{z} If z = a + bi then $\overline{z} =$
 - (b) $z \cdot \overline{z} =$
- 6. Find the reciprocal of 3 + 41
- 7. Theorems (page 108)
 - (a) The conjugate of a Real Number x is
 - (b) If z and w are complex numbers, then $\overline{z+w} =$
 - (c) If z and w are complex numbers, then $\overline{zw} =$
- 8. Powers of i
 - (a) $i^1 =$
 - (b) $i^2 =$
 - (c) $i^3 =$
 - (d) $i^4 =$
 - (e) $i^{27} =$
 - (f) $i^{101} =$

Date: _____

- 9. Write $(2+i)^3$ in standard form.
- 10. The square root of negative numbers

(a) $\sqrt{-1} =$

- (b) $\sqrt{-4} =$
- (c) $\sqrt{-8} =$
- 11. If $x^2 = -9$ then x =

12. Recall If
$$ax^2 + bx + c = 0$$
 then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- (a) If the discriminate $b^2 4ac > 0$ then
- (b) If the discriminate $b^2 4ac = 0$ then
- (c) If the discriminate $b^2 4ac < 0$ then
- (d) What can you say about the solutions of $3x^2 + 4x + 5 = 0$?
- (e) What can you say about the solutions of $2x^2 + 4x + 1 = 0$?
- (f) What can you say about the solutions of $9x^2 6x + 1 = 0$?

13. $x^2 - 4x + 8 = 0$